

RAPPORT MÉTADONNÉES

ÉVALUATION DES SERVICES ÉCOSYSTÉMIQUES DES ARBRES DU PARC JEAN DRAPEAU

JUIN 2021

5032 - Parc Jean Drapeau

HABITAT

Habitat est une entreprise de solutions environnementales fondée en 2017 (d'abord connue sous le nom d'Eco2urb) et basée à Montréal. Elle propose des solutions fondées sur la nature pour alimenter et propulser la transition écologique de ses client·e·s, notamment dans un contexte de relance verte.

Habitat est née d'une mise en commun des expertises de trois laboratoires de pointe dans le domaine des sciences humaines et naturelles. À la tête de l'entreprise, on retrouve les professeurs Dupras, Gonzalez et Messier, tous reconnus à l'échelle internationale dans leurs domaines.

Au cours des quatre dernières années, Habitat a catalysé la transition écologique d'une clientèle diversifiée. L'équipe collabore avec de nombreuses universités, centres de recherche et organisations non gouvernementales afin de faciliter la mise en œuvre de travaux scientifiques reliés à l'écologie, la foresterie et l'aménagement du territoire. Elle propose des approches innovatrices et des stratégies environnementales à la fine pointe de la science.

L'équipe de consultant.e.s scientifiques d'Habitat vous encadre dans la gestion durable des écosystèmes, dans la conservation de la biodiversité et dans la prise en compte des services rendus par vos infrastructures naturelles, en appliquant la meilleure science disponible.

Notre mission est d'accélérer votre transition écologique à l'aide de solutions ancrées dans la nature et la science.

Équipe de réalisation

Analyse et rédaction : Olivier Tanguy, M. Sc.

Kyle T. Martins, M. Sc.

Direction scientifique: Sylvia Wood, Ph. D.

Jérôme Dupras, Ph. D.

MÉTADONNÉES

Le présent document fait office de rapport décrivant les métadonnées utilisées et produites dans le cadre de l'évaluation des services écosystémiques des arbres du parc Jean-Drapeau et l'intégration des données d'inventaire à l'outil de visualisation *Explorateur de la Canopée urbaine* d'Habitat.

Au total, trois services écosystémiques (SÉ), soit la séquestration du carbone, l'amélioration de la qualité de l'air et l'évitement des eaux de ruissellement, ont été modélisés à l'aide du logiciel iTree-Eco v6.0.22 (USDA 2019). Le logiciel fournit une estimation de l'approvisionnement des SÉ rendus en valeurs biophysiques (ex. tonne de carbone, kilogramme des polluants atmosphériques, mètre cube d'eau) associées aux arbres sur un horizon temporel d'un an. Ces valeurs biophysiques ont ensuite été converties en valeurs économiques selon les référentiels locaux et appropriés (Tableau 1). À noter qu'afin de conserver une cohérence pour l'évaluation monétaire des SÉ des arbres du parc Jean-Drapeau, la même méthodologie et les taux de conversion déjà utilisés pour évaluer les SÉ des arbres de la Ville de Montréal ont été conservés. Ces taux et les références associés à chacun des SÉ modélisés sont présentés dans le tableau 1 ci-dessous.

Tableau 1. Description des taux de conversion monétaires utilisés pour chacun des services écosystémiques visés par l'étude.

Service écosystémique	Taux de conversion	Description	Référence
Séquestration du carbone (CO ₂)	2019 : 44 \$/tonne de CO₂eq.	Cette valeur représente le coût social du carbone, c'est-à-dire l'estimation théorique des dommages causés à la société à la suite d'une augmentation du carbone atmosphérique. L'équivalent de CO ₂ (CO ₂ eq.) est, pour un gaz à effet de serre, la quantité de dioxyde de carbone (CO ₂) qui provoquerait le même forçage radiatif que ce gaz, c'est-à-dire qui aurait la même capacité à retenir le rayonnement solaire.	Environnement et Changements Climatiques Canada (2016)
Amélioration de la qualité de l'air	$CO: 1,49 \ \text{$/kg}$ $O_3: 8,50 \ \text{$/kg}$ $NO_2: 1,27 \ \text{$/kg}$ $SO_2: 0,46 \ \text{$/kg}$ $PM2,5: 295,12 \ \text{$/kg}$ $Total: 620,65 \ \text{$/kg}$	Les valeurs pour l'amélioration de la qualité de l'air sont calculées selon la quantité de polluants absorbés par les stomates de l'arbre et via l'interception par le feuillage. Le coût économique est représenté selon les impacts sur la santé (mortalité et maladies respiratoires évitées). Des renseignements supplémentaires peuvent être trouvés dans l'étude de Nowak <i>et al.</i> (2018).	Nowak <i>et al.</i> (2018)
Évitement des eaux de ruissellement	Coût de traitement : 0,16 \$/m³ Coût de fonctionnement du réseau : 0,25 \$/m³ Total : 0,41 \$/m³	Le coût du ruissellement des eaux est dérivé des coûts unitaires de circulation des eaux usées dans les réseaux d'égouts et du coût unitaire de traitement des eaux usées par l'usine d'épuration, selon une étude pour la ville de Québec.	MAMOT (2014)

Les données brutes utilisées (essence, DHP des arbres, santé, localisation) pour évaluer les SÉ proviennent de l'inventaire des arbres le plus à jour (2021) fourni par la Société du parc Jean-Drapeau. L'inventaire comprend 16 963 arbres localisés sur l'île Sainte-Hélène et l'île Notre-Dame.

Les méthodologies employées pour l'analyse des trois SÉ sont décrites dans le tableau 2. À noter que les données météorologiques requises pour l'estimation des services liés à la qualité de l'air proviennent de trois stations météorologiques situées à proximité de l'Île Sainte-Hélène (Vieux Longueuil pour O₃, NO₂ et PM2.5; arrondissement Ville Marie pour CO; Brossard pour SO₂) et que ces données datent de l'année 2010, seule année pour laquelle des données sur la qualité de l'air sont disponibles. Mentionnons également que nous n'avons pas pu faire la différence entre les différents cultivars d'une même espèce par manque de données pour l'évaluation des SÉ. Les cultivars ont donc été traités comme s'il s'agissait de l'espèce principale.

Tableau 2. Description des méthodes de calcul des trois services écosystémiques visés par l'étude

Service écosystémique	Approche	Référence
Séquestration du carbone (CO ₂)	Ce service fait référence au processus de capture du carbone de l'atmosphère par les plantes et il est exprimé annuellement. Il est ainsi estimé en additionnant la croissance moyenne annuelle de l'arbre (basée sur les caractéristiques de l'espèce et le niveau de dépérissement de l'arbre) à son diamètre actuel afin d'estimer l'absorption de l'arbre à l'année x+1.	USDA Forest service (2019)
Amélioration de la qualité de l'air	Ce service prend en compte les polluants suivants : ozone (O ₃), monoxyde de carbone (CO), dioxyde d'azote (NO ₂), dioxyde de souffre (SO ₂) et les particules fines de moins de 2,5 microns (PM2,5). Les valeurs utilisées sont dérivées d'estimations venant de la littérature (voir références).	O ₃ , SO ₂ , NO ₂ : Baldocchi, (1988); Baldocchi <i>et al.</i> (1987) CO, PM2,5: Bidwell & Fraser (1972); Lovett (1994); Zinke (1967)
Évitement des eaux de ruissellement	Ce service se base sur la réduction des eaux de ruissellement causée par l'interception des précipitations par les feuilles des arbres. Les valeurs correspondent à la différence entre le ruissellement annuel avec et sans végétation.	USDA Forest Service (2019)

RÉSULTATS GÉNÉRAUX

Selon les calculs réalisés, les bénéfices monétaires annuels des SÉ de séquestration du carbone, d'amélioration de la qualité de l'air et d'évitement des eaux de ruissellement attribués à l'ensemble des arbres du parc Jean-Drapeau s'élèvent à **68 236,68 \$/an**.

Le tableau 3 ci-dessous présente les valeurs biophysiques des SÉ étudiés pour l'ensemble des arbres du parc et la valeur monétaire associée. À noter que 152 arbres des 16 963 présents dans fichier d'inventaire n'ont pas été pris en compte dans l'analyse des SÉ car ils étaient soit morts (54) soit présentés un code d'espèce invalide (6 PIFLVP, 2 TIXE, 7 TXCU, et 83 ULACMO n'ont ainsi pas été pris en compte). Une vérification sur le terrain est recommandée pour mettre à jour les codes espèces de ces arbres.

Tableau 3. Bénéfices monétaire annuels des SÉ associés aux arbres

Bénéfices	Valeur biophysique	Dollars canadien \$/an (2021)	
Séquestration du carbone (CO ₂)	289,39 t/an CO₂eq	12 744	
	43,77 kg/an (CO)	65,03	
	2008,40 kg/an (O₃)	17 070,26	
Amélianation de la muelité de Vain	371,54 kg/an (NO₂)	471,45	
Amélioration de la qualité de l'air	92,37 kg/an (SO₂)	42,69	
	112,23 kg/an (PM2.5)	33 122,30	
	Total : NA	Total : 50 771,74	
Évitement des eaux de ruissellement	11 514,51 m³/an	4 720,95	
Total	NA	68 236,68 \$/an	

INTÉGRATION DES DONNÉES À L'EXPLORATEUR DE LA CANOPÉE URBAINE

Les données émises par cette analyse fournissent une estimation de la contribution de chaque arbre aux SÉ en fonction de son essence, la taille de sa couronne (estimée à l'aide des équations allométriques) et son état de santé. Ces données finales sont obtenues en format comma separated values (.csv) dans un fichier nommé « JNDRP_InvArbre_SE ». Les données finales sont produites à l'échelle de l'arbre individuel et ont été intégrées dans l'outil de visualisation Explorateur de la Canopée urbaine créé et mise à la disposition du public par Habitat par le biais de son site web. Le tableau 4 résume les codes de chacune des colonnes du fichier .csv « JNDRP_InvArbre_SE ».

 Tableau 4. Description des codes du fichier JNDRP_InvArbre_SE.csv

Nom code	Titre	Unité	Description
id	Identifiant		Numéro d'identification unique de l'arbre
dhp_cal	Valeur DHP calculée	Centimètre	Diamètre à hauteur de poitrine
litnspp	Nom latin de l'espèce		Nom scientifique de l'arbre
acc_gen	Nom du genre accepté		Genre de l'arbre
acc_sp	Nom de l'espèce accepté		Espèce de l'arbre
acc_auth	Nom de l'autorité taxonomique accepté		Autorité taxonomique de l'arbre
acc_family	Nom de la famille accepté		Famille de l'arbre
acc_cult	Nom du cultivar		Cultivar de l'arbre
code_espec	Code SIGLE de l'espèce		Code d'espèce utilisée pour l'inventaire du parc Jean-Drapeau
itreecode	Code iTree de l'espèce		Code d'espèce utilisée par le logiciel iTree pour réaliser les calculs de SÉ.
frspp	Nom en français de l'espèce ou genre		Genre ou espèce de l'arbre en français
engspp	Nom en anglais de l'espèce ou genre		Genre ou l'espèce de l'arbre en anglais
fctgr10	Groupe fonctionnel de l'arbre		Groupe fonctionnel de l'arbre
cote_sante	Côte de santé de l'arbre		Côte de santé de l'arbre
dep_classe	Classe de dépérissement	Pourcentage (%)	Classe de dépérissement de la couronne de l'arbre selon les classes employées dans iTree
dep_perc	Pourcentage de dépérissement	Pourcentage (%)	Pourcentage de dépérissement de la couronne de l'arbre
cstrkg	Stockage du carbone	Kilogramme	Kilogramme de carbone stocké par la biomasse l'arbre depuis sa naissance
csqkyr	Séquestration du carbone (CO ₂)	Kilogramme / an	Kilogramme de carbone séquestré annuellement par l'arbre
rnfm3yr	Évitement des eaux de ruissellement	Mètre cube / an	Mètre cube d'eau intercepté annuellement par l'arbre
plrgyr	Amélioration de la qualité de l'air	Gramme / an	Gramme de polluants filtrés annuellement par l'arbre
coord_x	Coordonnée x de l'arbre	UTM	Coordonnée UTM x de l'arbre
coord_y	Coordonnée y de l'arbre	UTM	Coordonnée UTM y de l'arbre
longi	Longitude de l'arbre	Degrés	Longitude de l'arbre en degrés décimaux
latid	Latitude de l'arbre	Degrés	Latitude de l'arbre en degrés décimaux

BIBLIOGRAPHIE

- Baldocchi, D. (1988). A multi-layer model for estimating sulfur dioxide deposition to a deciduous oak forest canopy. Atmospheric Environment, 22: 869-884.
- Baldocchi, D.D., Hicks, B.B. & Camara, P. (1987). A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmospheric Environment, 21: 91-101.
- Bidwell, R.G.S. & Fraser, D.E. (1972). Carbon monoxide uptake and metabolism by leaves. Canadian Journal of Botany, 50:1435-1439.
- Environnement et Changements Climatiques Canada (2016). Mise à jour technique des estimations du coût social des gaz à effet de serre réalisées par Environnement et Changements Climatiques Canada.
- Ministère des Affaires Municipales et Occupation du Territoire (MAMOT) (2014). Indicateurs de gestion 2014 pour la municipalité locale de Québec. https://www.ville.quebec.qc.ca/apropos/profil-financier/docs/indicateurs gestion 2014.pdf. 22p.
- Nowak, D. J., Hirabayashi, S., Doyle, M., Mcgovern, M., & Pasher, J. (2018). Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban Forestry & Urban Greening, 29, 40-48. doi:10.1016/j.ufug.2017.10.019
- USDA Forest Service (2019). i-Tree Software Suite v6.0.22 Online. URL https://www.itreetools.org (consulté le 20.05.2021).
- Lovett, G.M. (1994). Atmospheric deposition of nutrients and pollutants in North America: an ecological perspective. Ecological Applications, 4: 629-650.
- Zinke, P.J. 1967. Forest interception studies in the United States. In: Sopper, W.E.; Lull, H.W., eds. Forest Hydrology.Oxford, UK: Pergamon Press: 137-161.

habitat-nature.com

5818, bld St-Laurent Montréal (Québec) H2T 1T3

+1 438 825-4445 info@habitat-nature.com